

Process Development and Scale up of Advanced Active Battery Materials – Gradient Cathode Materials

Youngho Shin

Ozgenur Feridun

Gregory Krumdick (PI)

Project ID: ES167

June 2017 Washington, D.C.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: Oct. 2010
- Project end date: Sept. 2017
- Percent complete: on going

Budget

- Total project funding:
 - \$1.2M in FY16
 - \$1.1M in FY17

Barriers

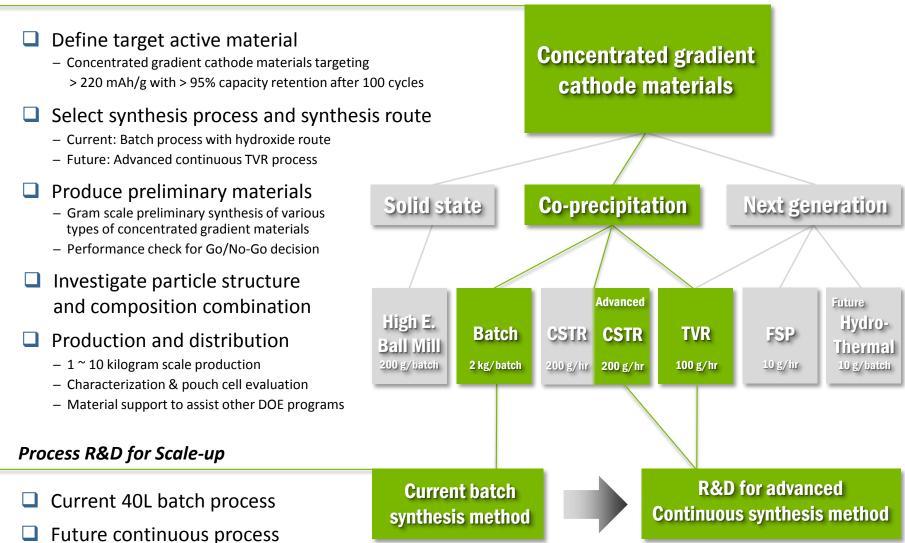
- Cost: Reduce manufacturing costs with advanced, continuous processing methods
- Performance: Optimization of particle structure and composition combination for maximum gradient material performance

Partners

- Active material process R&D:
 - Argonne's Applied R&D Group
 - Material synthesis and scale-up
 - University of Illinois at Chicago
 - 3D elemental mapping
 - Technische Universität Braunschweig
 - Particle stress study
 - Brookhaven National Laboratory, EES,
 Dr. Xiao-Qing Yang's group
 - Thermal stability
 - Laminar
 - Taylor Vortex Reactor process scale-up

Objectives - Relevance

- The objective of this program is to carry out a systematic research to:
 - Synthesize and evaluate various types of concentrated gradient cathode materials targeting > 220 mAh/g with > 95% capacity retention after 100 cycles.
 - Develop cost-effective batch and continuous processes for the scale-up of concentrated gradient cathode materials.
 - Provide sufficient quantities of these materials produced under rigorous quality control specifications for industrial evaluation of further research.
- The relevance of this program to the DOE Vehicle Technologies Program is:
 - The program is a key missing link between discovery of advanced battery materials,
 market evaluation of these materials and high-volume manufacturing.
 - Reducing the risk associated with the commercialization of new battery materials.
 - This program provides large quantities of materials with consistent quality.
 - For industrial validation in large format prototype cells.
 - For further research on concentrated gradient cathode materials.

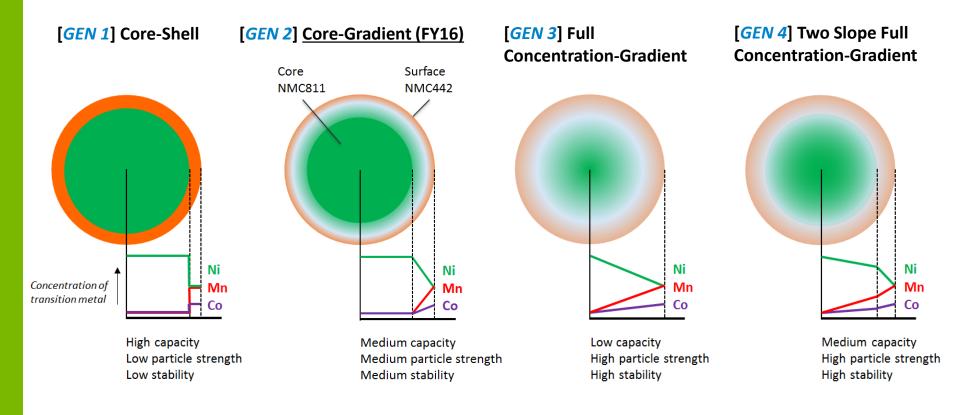

Milestones

Material Characterize preliminary 622 Gradient material Completed FY16 Material Deliver preliminary 622 Gradient material to BNL Completed - X-ray absorption spectroscopy Completed - Thermal stability studies Completed Material Design high-capacity concentrated gradient materials - 811 Gradient material (LiNi _{0.90} Mn _{0.05} Co _{0.05} O ₂ core + LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂ surface) Completed - 8 μm particle structure design (Core-Gradient & Core-Shell) Q Process Set up 20L batch reactor system for material synthesis Completed Material Synthesize preliminary 811 Core-Gradient material Completed Material Synthesize preliminary 811 Core-Shell material Completed Material Characterize two prepared gradient materials
- X-ray absorption spectroscopy - Thermal stability studies - Material Design high-capacity concentrated gradient materials - 811 Gradient material (LiNi _{0.90} Mn _{0.05} Co _{0.05} O ₂ core + LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂ surface) - 8 μm particle structure design (Core-Gradient & Core-Shell) - 8 μm particle structure design (Core-Gradient & Core-Shell) - Process Set up 20L batch reactor system for material synthesis - Material Synthesize preliminary 811 Core-Gradient material - Material Synthesize preliminary 811 Core-Shell material - Completed
- X-ray absorption spectroscopy - Thermal stability studies - Material Design high-capacity concentrated gradient materials - 811 Gradient material (LiNi _{0.90} Mn _{0.05} Co _{0.05} O ₂ core + LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂ surface) - 8 μm particle structure design (Core-Gradient & Core-Shell) - 8 μm particle structure design (Core-Gradient & Core-Shell) - 8 μm particle structure design (Core-Gradient & Completed - 8 μm particle structure design (Core-Gradient & Completed - 8 μm particle structure design (Core-Gradient material Synthesis - Completed - Material Synthesize preliminary 811 Core-Shell material - Completed - Material Synthesize preliminary 811 Core-Shell material
Material Design high-capacity concentrated gradient materials - 811 Gradient material (LiNi _{0.90} Mn _{0.05} Co _{0.05} O ₂ core + LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂ surface) Completed - 8 μm particle structure design (Core-Gradient & Core-Shell) Completed Process Set up 20L batch reactor system for material synthesis Completed Material Synthesize preliminary 811 Core-Gradient material Completed Material Synthesize preliminary 811 Core-Shell material Completed
- 811 Gradient material (LiNi _{0.90} Mn _{0.05} Co _{0.05} O ₂ core + LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂ surface) - 8 μm particle structure design (Core-Gradient & Core-Shell) Process Set up 20L batch reactor system for material synthesis Completed Material Synthesize preliminary 811 Core-Gradient material Material Synthesize preliminary 811 Core-Shell material Completed Completed
- 8 μm particle structure design (Core-Gradient & Core-Shell) Process Set up 20L batch reactor system for material synthesis Material Synthesize preliminary 811 Core-Gradient material Material Synthesize preliminary 811 Core-Shell material Completed FY17
Process Set up 20L batch reactor system for material synthesis Completed Material Synthesize preliminary 811 Core-Gradient material Completed Material Synthesize preliminary 811 Core-Shell material Completed
Material Synthesize preliminary 811 Core-Gradient material Completed Material Synthesize preliminary 811 Core-Shell material Completed
Material Synthesize preliminary 811 Core-Shell material Completed
FY17
- Cross-sectional mapping (SEM with EDS) Completed Q
 Electrochemical test and comparison
– Thermal stability studies Planned
Material Kg production of 811 Core-Shell and Core-Gradient materials Planned
Material Design other types of concentrated gradient materials such as FCG* and TSFCG** Planned
Process Investigate an advanced continuous synthesis process using 10L TVR*** Planned

^{*} Full Concentration-Gradient *** Two Slope Full Concentration-Gradient *** Taylor Vortex Reactor


Approach - Strategy

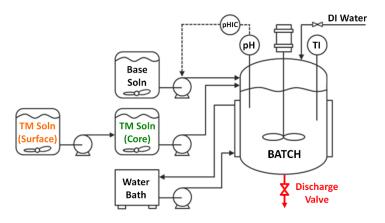
Material Synthesis and Evaluation



Gradient Material Strategy

Gradient material will have the best of Core and Surface compositions

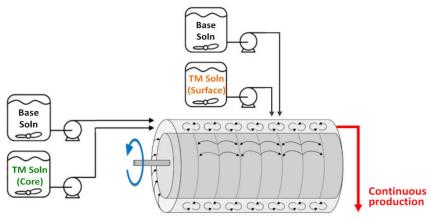
- Ni-rich material: high capacity, low stability
- Gradient layer: prevents the crack and segregation between Core and Shell
- Mn-rich material : low capacity, high stability


Research target

- 1 Higher capacity increase Ni portion
- 2 Higher particle strength particle structure optimization
- 3 Higher stability composition optimization

Gradient Material Synthesis Process

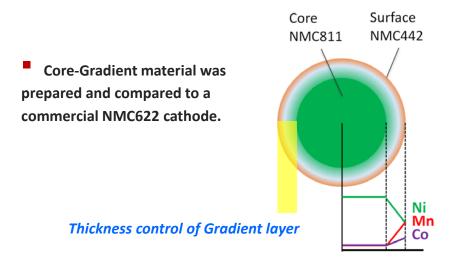
Batch reactor system was used for gradient material synthesis

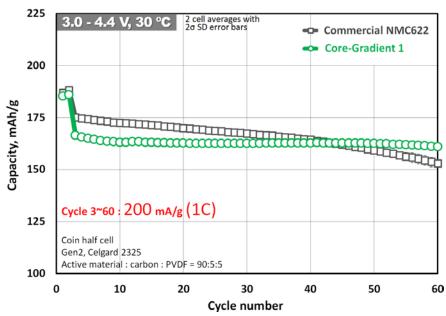

Current batch production

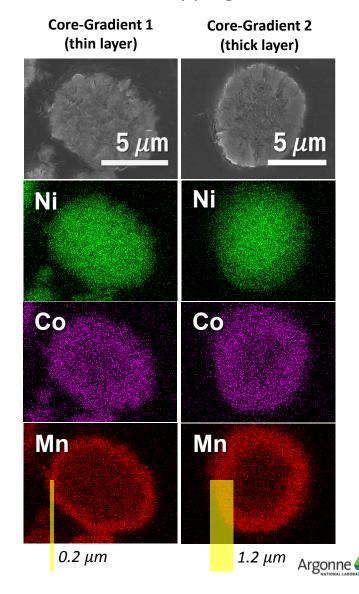
- * First, Core TM solution feeding to batch reactor Then, Surface TM solution feeding to Core TM solution tank
- Core TM solution changes to Surface TM solution gradually

Continuous production of gradient material is being investigated using Taylor vortex reactor system

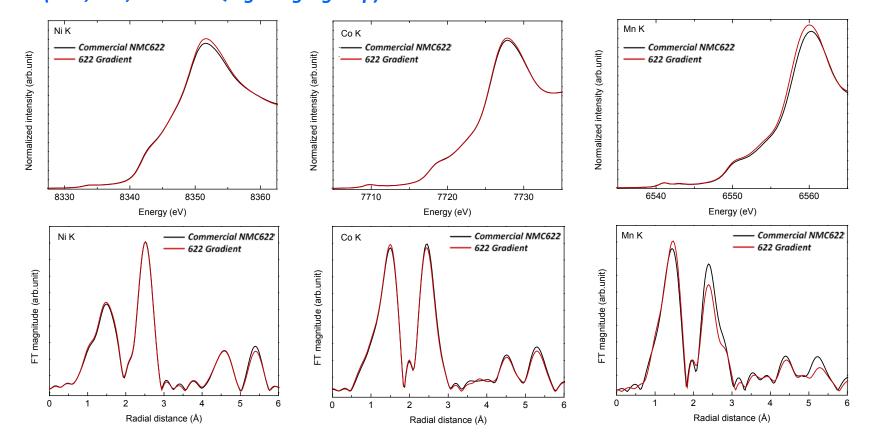
Process development for continuous production




L Taylor Vortex Reactor in place


622 Gradient Material (FY16)

Synthesis of 622 Gradient materials

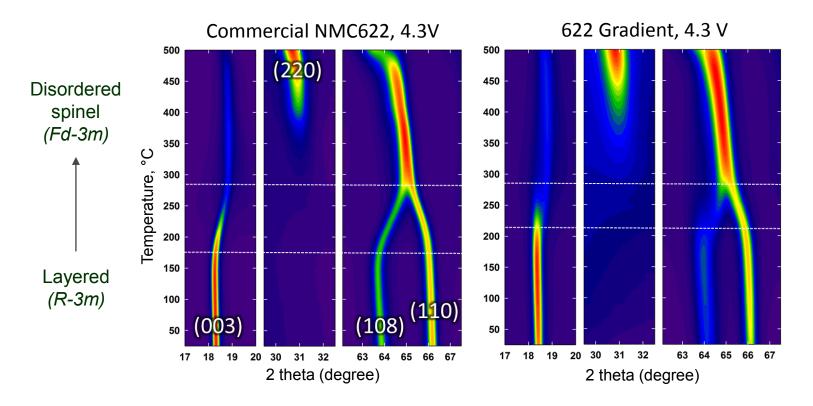

Elemental mappings

BROOKHAVEN NATIONAL LABORATORY

622 Gradient Material Characterization

X-ray absorption spectroscopy on commercial NMC622 and 622 Gradient materials (BNL, EES, Dr. Xiao-Qing Yang's group)

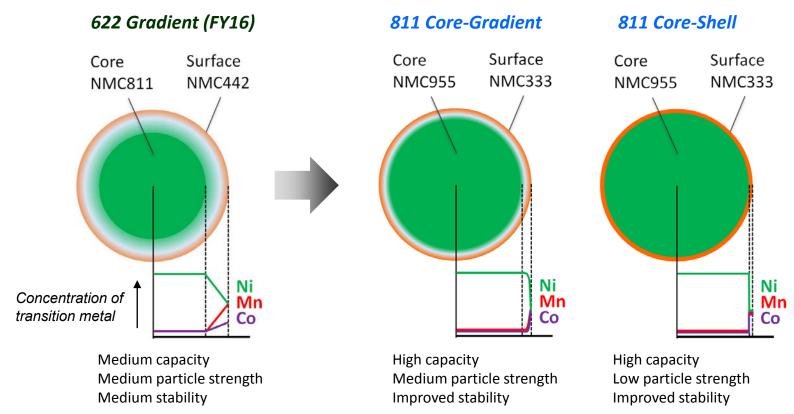
[▼] The Ni, Co and Mn K-edge XANES data are almost identical, which indicates that the average oxidation states of Ni, Co and Mn in commercial NMC622 and 622 Gradient cathodes are same.


[✓] The local structure of Ni and Co are same. But Mn-M (M=Ni, Co, Mn) correlation at ~2.5 A shows a difference. The local structural analysis near surface by using soft X-ray and TEM will be conducted.

Argonnese

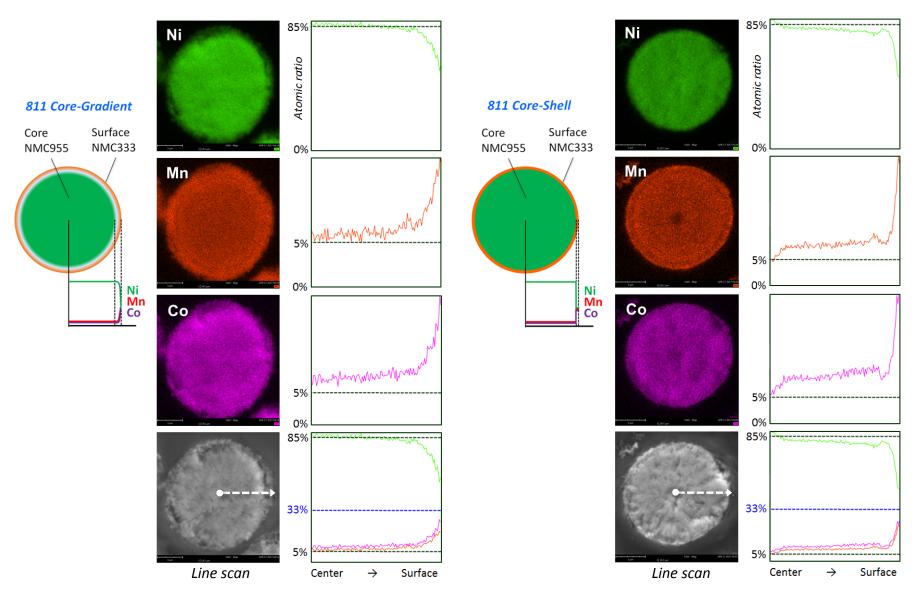
622 Gradient Material Characterization

☐ Thermal stability studies on the charged 622 Gradient using time resolved XRD (BNL, EES, Dr. Xiao-Qing Yang's group)


[✓] The first phase transition from layered to spinel started at 175°C for commercial NMC622 while 622 Gradient shows the phase transition from at about 200°C.

[✓] Peak broadening at charged state for 622 Gradient indicates the structural inhomogeneity characteristic.

 $[\]checkmark$ The gas analyze will be conducted to investigate the difference in (003) peak shift behavior.

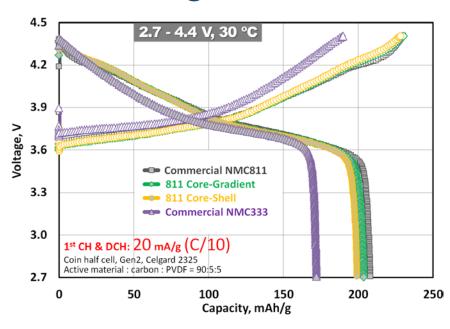

811 Gradient Material Synthesis

- To achieve higher-capacity gradient material with better cycle life
 - 1 Core composition LiNi_{0.90}Mn_{0.05}Co_{0.05}O₂ for higher capacity
 - 2 Surface composition LiNi_{0.33}Mn_{0.33}Co_{0.33}O₂ for better stability
 - 3 Overall composition LiNi_{0.80}Mn_{0.10}Co_{0.10}O₂
- Particle structure design for 811 Gradient materials

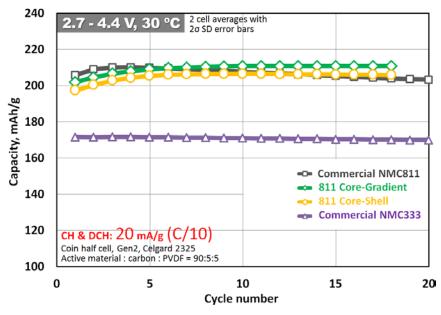
811 Gradient Material Synthesis

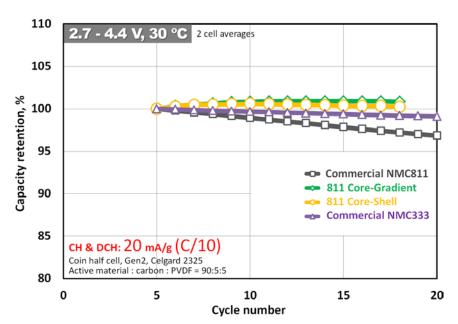
■ SEM with EDS on synthesized 811 Gradient materials

Commercial NMC and 811 Gradient Materials

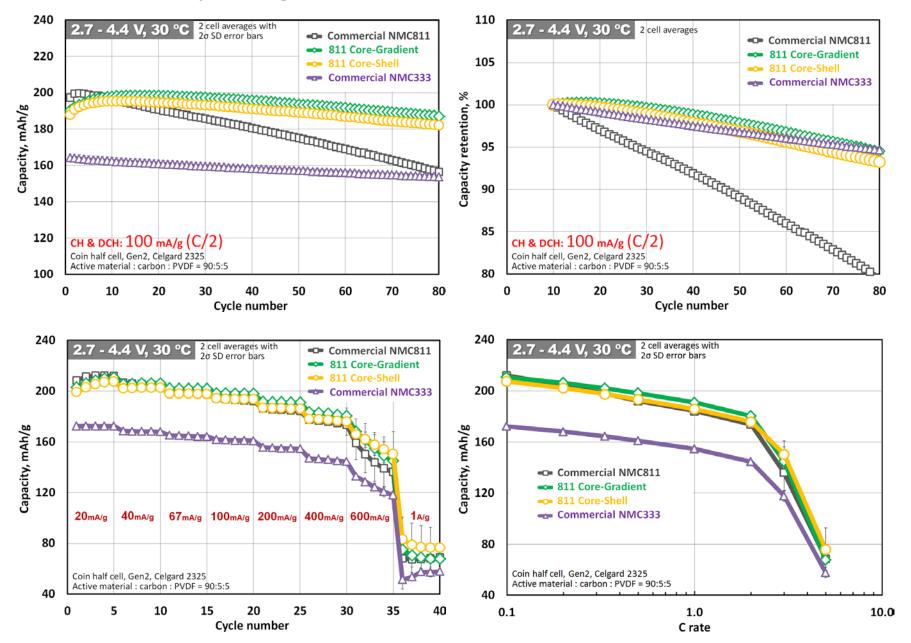

☐ Comparison of 811 Gradient material prepared using batch reactor

Material	NMC 811	NMC 333	811 Core-Gradient	811 Core-Shell
Scale / status	Commercial product		MERF pre-pilot preliminary product	
SEM	P. 2005 TeV trup	D 2500. W 1445		D 2555
Composition	NMC 811	NMC 333	~ NMC 811	~ NMC 811
ICP-MS analysis	Li _{1.04} Ni _{0.80} Mn _{0.10} Co _{0.10} O _y	Li _{1.07} Ni _{0.34} Mn _{0.33} Co _{0.33} O _y	Li _{1.00} Ni _{0.76} Mn _{0.12} Co _{0.12} O _y	$Li_{1.00}Ni_{0.76}Mn_{0.12}Co_{0.12}O_{y}$
Particle size D ₅₀ [μm]	13.7	11.7	8.0	8.0
BET [m ² /g]	0.37	0.34	0.55	0.57
* FCE [%]	90.0	90.5	88.1	86.7
* Avg. working voltage	3.86	3.88	3.87	3.87
* Discharge capacity @ 5 cycle [mAh/g]	210.0	171.6	209.1	205.4

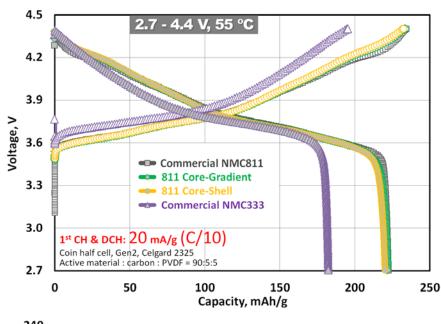

^{*} At C/10, 2.7 – 4.4 V and 30°C

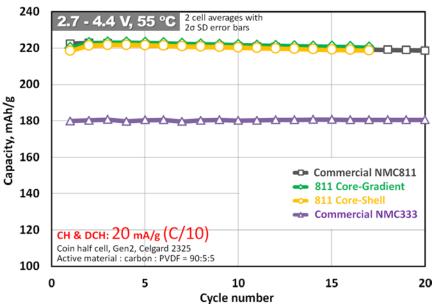

[✓] Gradient materials show reasonable physical electrochemical properties compared to a commercial NMC811.

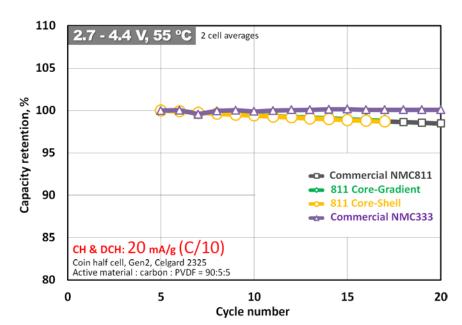
30°C Voltage Profile and C/10 Cycling



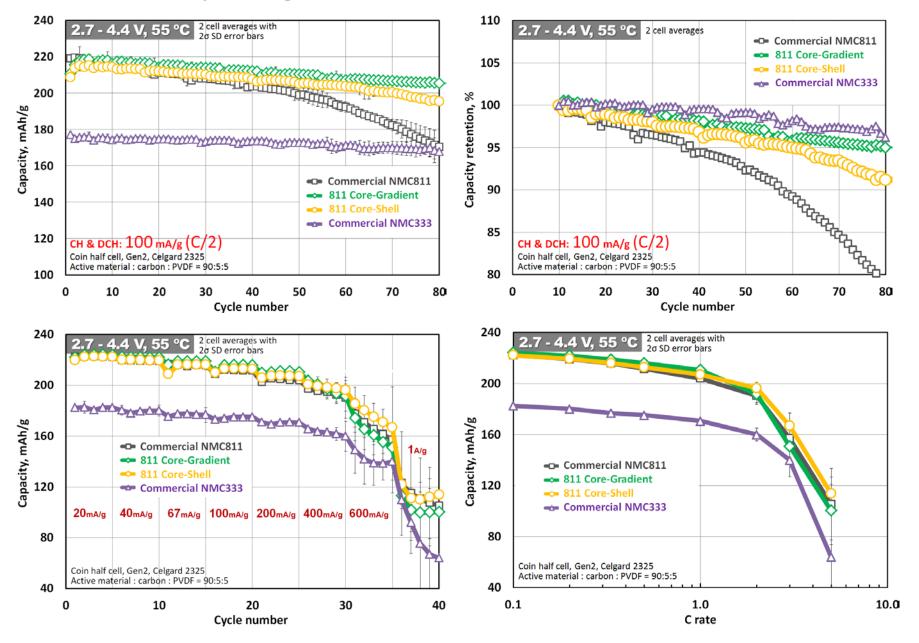
- ✓ Both Core-Gradient and Core-Shell show high initial discharge capacity of 210 mAh/g at C/10 and 30°C.
- ✓ Gradient materials show improved capacity retention compared to commercial NMC811 and NMC333 at C/10 and 30°C.



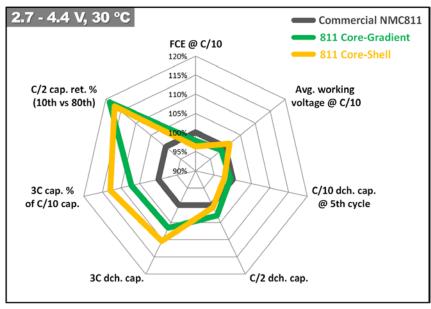

30°C C/2 Cycling and Rate Performance

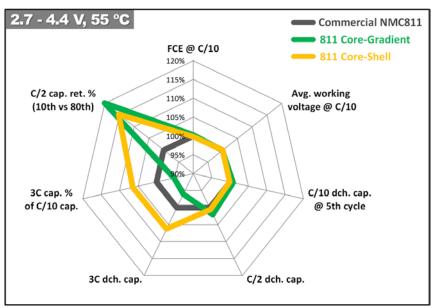


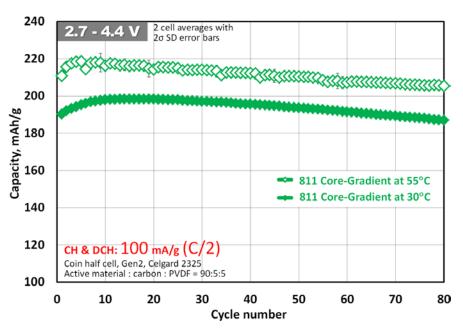
55°C Voltage Profile and C/10 Cycling



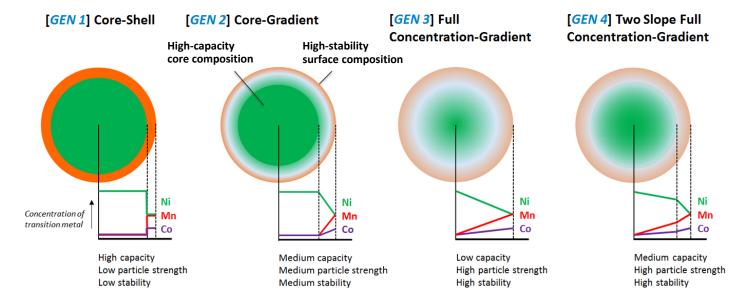
- ✓ Both Core-Gradient and Core-Shell show high initial discharge capacity of 220 mAh/g at C/10 and 55°C.
- ✓ Gradient materials show similar capacity retention compared to commercial NMC811 at C/10 and 55°C.




55°C C/2 Cycling and Rate Performance



Radar Map Comparison and Conclusion


- √ 811 Core-gradient material shows 20% improved capacity retention compared to a commercial NMC811.
- ✓ 811 Core-Shell material shows better rate capability.
- ✓ To further improve cycle life of NMC gradient materials, other additional approaches are necessary such as surface coating.

Long-term Research Plan for Gradient Materials

- Investigate various particle structures and composition combinations
 - Particle strength analysis
 - 3D elemental mapping
 - Thermal stability

- Investigate an advanced continuous synthesis process
 - Advanced CSTR (Continuous Stirred Tank Reactor) system
 - TVR (Taylor Vortex Reactor) system
- Surface coating research on 811 Core-Gradient material to achieve improved cycle life

Responses to Previous Year Reviewers' Comments

- "The reviewer remarked outstanding performance meeting the needs of the industry and research community while adding value to ANL's thorough licensing strategies."
 - <u>Response:</u> We will try to invent new types of concentrated gradient cathode material and develop its customized synthesis process which will generate several material and/or process patents to strengthen ANL's thorough licensing strategies.
- "The reviewer said that the list of the collaborators demonstrated the trust this group has earned, well done. It will be interesting to see the performance of the commercialized products."
 - Response: The characterization of the synthesized materials will be carried out in collaboration with several basic research groups for fundamental understanding. The physical and electrochemical properties of the synthesized 811 Core-Shell and Core-Gradient materials were compared to commercial NMC811 and NMC333. As such, newly prepared concentrated gradient cathodes will constantly be compared to an available commercial products with statistical evaluation.
- "The reviewer commented that proposed future research is well-balanced to meet the program objectives and said highly qualified, hard-working team."
 - <u>Response:</u> We will develop both new types of concentrated gradient cathode material and their new synthesis process which has economical feasibility with expertise and effort.

Collaborations

- Material Characterization:
 - Brookhaven National Lab (Seongmin Bak)
 - Thermal stability
 - University of Illinois at Chicago (Jordi Cabana)
 - 3D elemental mapping
 - Technische Universität Braunschweig (Wolfgang Haselrieder)
 - Particle stress evaluation
- Synthesis process R&D:
 - Laminar Co., Ltd CRADA
 - Taylor Vortex Reactor process scale-up
- Electrochemical evaluation of scaled materials:
 - Argonne's CAMP facility (Andrew Jansen)
- Thermal stability evaluation:
 - 622 Core-shell cathode to Brookhaven National Lab
 - 622 Core-gradient cathode to Brookhaven National Lab

Open to working with any group developing advanced active materials that will be beneficial for the ABR program.

Remaining Challenges and Barriers

- Development and scale-up of concentrated gradient cathode material is challenging but has great promise to improve the performance of battery materials.
- Continuous synthesis process for concentrated gradient cathode material need to be developed to lower manufacturing cost.
- Further improvement of concentrated gradient cathode material by surface coating is necessary to achieve longer cycle life.

Proposed Future Research

- 811 Core-Shell and Core-Gradient materials
 - Kilogram scale-up of 811 Core-Shell and Core-Gradient materials (FY17)
 - Large format cell evaluation (FY17)
 - Thermal stability studies (FY17)
 - Surface coating studies to improve cycle life (FY17)
 - Particle strength analysis
 - 3D elemental mapping
- Preliminary synthesis of other types of 811 concentrated gradient materials
 - Investigate various particle structures such as FCG and TSFCG
 - Material characterization and comparison
- Investigate an advanced continuous synthesis process
 - Develop a customized continuous process for concentrated gradient materials

Any proposed future work is subject to change based on funding levels.

Summary

622 Gradient material characterization

- X-ray absorption spectroscopy
- Thermal stability studies

811 Core-Shell and Core-Gradient materials

- Core $(LiNi_{0.90}Mn_{0.05}Co_{0.05}O_2)$ and surface $(LiNi_{0.33}Mn_{0.33}Co_{0.33}O_2)$ composition were determined
- Particle structure (Core-Shell and Core-Gradient) was selected
- 20L batch synthesis system was set up
- Preliminary 811 Core-Shell material was synthesized
- Preliminary 811 Core-Gradient material was synthesized
- Cross-sectional mapping (SEM with EDS)
- Electrochemical test and comparison to commercial products

Develop a customized continuous process

Taylor Vortex Reactor system is being investigated

Acknowledgements and Contributors

- Support from David Howell and Peter Faguy of the U.S. Department of Energy's Office of Vehicle Technologies is gratefully acknowledged.
- Argonne National Laboratory
 - Youngmin Chung
 - Gerald Jeka
 - Mike Kras
 - Eva Allen
 - Jessica Scott
 - Andrew Jansen
 - Bryant Polzin
 - Steve Trask
 - Alison Dunlop
 - Wenquan Lu
 - Chris Claxton
 - Ana Kiricova

- Brookhaven National Laboratory
 - Seongmin Bak
- Laminar
 - Jongpal Hong
- UIC
 - Jordi Cabana
- Technische Universität Braunschweig
 - Wolfgang Haselrieder